Contributed Talk

Splinter eROSITA

THE X-RAY CLUSTER SURVEY WITH EROSITA: CONSTRAINTS ON DARK-ENERGY

A. Pillepich¹, T. Reiprich², C. Porciani²

 $^1 Max\text{-}Planck\text{-}Institut$ für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany $^2 Argelander\text{-}Institut$ für Astronomie, Auf dem Hügel 71, D-53121 Bonn, Germany

We forecast the potential of the X-ray galaxy-cluster telescope eROSITA to constrain Dark-Energy models. We focus on spatially-flat cosmological scenarios with either constant or time-dependent Dark-Energy equation of state parameters. The results are given by the combination of the abundance and spatial clustering of a synthetic photon-count limited sample of clusters of galaxies up to $z \sim 2$. We quantify our findings according to different scenarios for the availability of 1) X-ray follow-up observations, 2) photometric and spectroscopic redshifts, and 3) accurate knowledge of the observable – mass relation down to the scale of groups of galaxies. With 10^5 clusters from an average all-sky exposure of 1.6 ks (with at least 50 photons each), eROSITA will give marginalized, one-dimensional, 1σ errors of $\Delta\sigma_8 = 0.008$ ($\sim 1\%$), $\Delta\Omega_m = 0.006$ (2.2%), $\Delta w_0 = 0.07$ (7%), and $\Delta w_a = 0.27$ (optimistic scenario), in combination with and largely improving upon Planck data from the temperature anisotropies of the Cosmic Microwave Background.